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A true universal Turing machine can be constructed only if it is possible to 
actually process and store an infinite number of bits between now and the end 
of the universe. Conditions on the universe are derived that must hold if such 
processing and storage is to be possible. In particular, it is shown that it is 
possible only if the universe is closed and only if its future c-boundary consists 
of a single point. 

1. I N T R O D U C T I O N  

In the last decade, there has been enormous progress in our understand- 
ing of  the fundamental  physical limitations on computation (Landauer,  
1985; Bennett and Landauer,  1985). However, this work has been entirely 
concerned with limitations arising from local physical laws, most notably 
the second law of thermodynamics and the uncertainty relations applied in 
a noncosmological context. As Bennett and Landauer (1985) point out at 
the end of their recent nontechnical review of this work, the ultimate physical 
limitations on computat ion will likely arise from limitations on the bit size 
of  computer  memories and the speed with which different parts of  the 
computer  can communicate with each other. The ultimate limit tO physical 
size is the size of  the entire universe, and the ultimate speed is that imposed 
by relativity. Thus, the ultimate physical limitations are those imposed by 
cosmology and relativity. 

In this paper  I shall investigate the limitations imposed on computat ion 
by general relativity in the cosmological context. In Section 2, I shall review 
some of  the basic features of  relativistic cosmology. The global causal 
structure of  the actual universe is expected to be quite different from that 
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of Minkowski space, and this will drastically effect the speed-of-light limita- 
tion to computation. Furthermore, I shall point out that the most abundant 
energy source for the recording of computer output [no energy is required 
for processing if the processing is sufficiently slow (Landauer, 1985)] and 
the manufacture of computer elements is cosmological gravitational 
anisotropy. In Section 3, I review how the material content of the universe 
is expected to evolve in the far future. This is necessary in order to determine 
which elementary particles will be available for the construction of computer 
elements. In Section 4, I state necessary conditions for an infinite number 
of bits of  information to be processed between now and the end of the 
universe. I show that the known physical laws will permit these necessary 
conditions to be satisfied, provided the universe is closed, the final singularity 
is a single point in the c-boundary topology, and the elementary particle 
spectrum has a certain form. 

The material in this paper is covered from a slightly different point of 
view in the tenth chapter of my recent book with John D. Barrow of the 
University of Sussex (Barrow and Tipler, 1986). I shall assume in the 
following sections that the Einstein equations without cosmological constant 
hold; that is, Rab--~gabR = 87"i 'Tab.  The signature of spacetime is ( - + + + ) ;  
the notation and other conventions will be that of Hawking and Ellis (1973). 

2. COSMOLOGICAL MODELS AND THE GLOBAL STRUCTURE 
OF SPACETIME 

For simplicity I restrict attention to cosmologies that possess a Cauchy 
hypersurface. A Cauchy hypersurface is defined to be a hypersurface that 
every timelike curve intersects exactly once (Hawking and Ellis, 1973). 
Spacetimes that possess a Cauchy hypersurface can be shown to be globally 
hyperbolic (Hawking and Ellis, 1973), and all globally hyperbolic space- 
times possess Cauchy hypersurfaces, so "globally hyperbolic" and "possess- 
ing a Cauchy hypersurface" are equivalent. A spacetime is said to be globally 
hyperbolic if (1) all sets of the form J+(p) n J-(q) are compact for all events 
p and q in the spacetime, and further (2) strong causality holds. The set 
J+(p) is the causal future of the event p, and is the set of all events that 
can be reached from p by a future-directed timelike or null curve. Thus 
J+(p) is the set of all events that can be influenced by p. The set J-(q) is 
the causal past of the event q, and is defined analogously to J+(p). The set 
J-(p) is the set of all events that can influence the event p. [The sets I+(p) 
and I-(p) are the chronological future and chronological past of p, respec- 
tively. I§ is the set of  all events that can be reached from p by a 
future-directed timelike curve. I+(p) is the set of all events that can be 
reached from p by a physical observer.] Strong causality is said to hold if 
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every neighborhood of every event has a neighborhood that no timelike or 
null curve intersects more than once. The importance of the requirement 
of global hyperbolicity is that only globally hyperbolic spacetimes are 
uniquely determined by initial data given on an initial spacelike hypersurface 
(the Cauchy hypersurface) (Hawking and Ellis, 1973). 

Geroch (1970) has shown (see also Hawking and Ellis, 1973) that 
globally hyperbolic spacetimes have topology S •  1, where S is the 
topology of the spacelike Cauchy hypersurface (all Cauchy hypersurfaces 
in a spacetime have the same topology), and R 1 is the time dimension. 
Globally hyperbolic cosmologies can be distinguished by the topology of 
their Cauchy hypersurfaces. The closed universes are those whose spacelike 
Cauchy hypersurfaces are compact (and without boundary), and open 
universes are those whose spacelike hypersurfaces are noncompact. 

Cosmologies can also be classified in terms of their long-term dynamical 
evolution. Cosmologies whose size or radius of curvature (scale factor) 
grow without limit are called ever-expanding universes, while cosmologies 
that reach a maximum size and recollapse are called recollapsing universes. 

In the popular literature, closed universes are pictured as always 
recollapsing, while open universes are considered always to be ever- 
expanding. This is due to the fact that the most familiar cosmological 
models--the Friedman models--do have these properties. Firedman cos- 
mologies are, however, very special: by definition, their Cauchy hypersur- 
faces are homogeneous and isotropic. Their Cauchy hypersurfaces are 
generally considered to have two possible topologies, S3 and R 3, the former 
being compact and the latter being noncompact. If the cosmological constant 
is zero and the stress energy tensor Tab satisfies 

( Tab--�89 V~Vb>--O (1) 

for all timelike vectors V a, if the inequality (1) is strict at least one point 
on every Cauchy hypersurface, with V a being the normal to the hyper- 
surface, and if the principle pressures of Tab are all positive, then all open 
Friedman universes do indeed ever-expand, and all closed Friedman uni- 
verses do indeed recollapse. Condition (1), which is called the strong energy 
condition (Hawking and Ellis, 1973), is satisfied by all physically realistic 
matter fields. The strict inequality just means that the matter density is 
nonzero at least one point in the entire universe, again a reasonable 
requirement. 

But it is not known whether this connection between the topology of 
the Cauchy hypersurfaces and the long-term dynamical evolution holds for 
universes that are nonhomogeneous or anisotropic. This is important, 
because, as we shall see, in its actual evolution, the universe is likely to 
become extremely anisotropic. 
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A few general results are known about the long-term evolution of the 
universe. For example, it is possible to prove that a dosed universe cannot 
return arbitrarily closely to a previous state: 

Theorem I. If a spacetime containing compact Cauchy hypersurfaces 
is uniquely developed from initial data on any of its Cauchy hypersurfaces, 
and if the strong energy condition holds with the inequality being strict at 
at least one event on each nonspacelike geodesic, then the spacetime cannot 
be time periodic. Furthermore, if the matter fields satisfy the standard 
conditions (a), (b), and (c) given in Hawking and Ellis (1973, pp. 254-255) 
for unique time development, then for any neighbourhood U of any Cauchy 
hypersurface Sl, a number e exists such that 

II(h, x, X, X') - (hi, xl, XI, .)(~)11o+5 > e 

for the initial data on any Cauchy hypersurface S with U c~ S empty, where 
II" �9 "11o+5 is the Sobolev norm on initial data space, and (h, x, X, X') are the 
initial data on S. 

The proof of the theorem is given in Tipler (1980), and a discussion 
of the meaning of the various conditions is given in (Tipler, 1979a). In 
brief, the Sovolev norm is a natural way of defining "nearness" for initial 
data sets for continuous fields. It amounts to comparing the differences of 
the field initial values averaged over the entire Cauchy hypersurface. If  the 
initial data on two surfaces are truly different, this average should be 
nonzero, and Theorem 1 tells us that it is. 

Theorem 1 shows us that general relativistic cosmology is quite different 
from Newtonian cosmology. In Newtonian mechanics, as is well known 
[see Tipler (1980) for a reveiw], a system constrained within a finite region 
of phase space is required to return arbitrarily closely to almost all previous 
states. This result, the Poincar6 recurrence theorem, makes a closed universe 
cosmology based on Newtonian mechanics cyclic, or nonevolutionary, in 
the long run. It will be important for unlimited computation in a closed 
universe that general relativity forbids recurrence. With recurrence, a poten- 
tially infinite state machine such as a universal Turing machine would be 
impossible. 

Another theorem, due collectively to Brill and Flaherty (1976), Marsden 
and Tipler (1980), and Gerhardt (1983) [see Barrow and Tipler (1985) for 
a review of these results] is that in a globally hyperbolic universe that is 
not everywhere fiat and satisfies the strong energy condition, there will exist 
a unique globally defined time coordinate. A time coordinate in relativity 
is defined by a "slicing" of four-dimensional space-time by a sequence of 
three-dimensional spacelike hypersurfaces. This sequence is called a foli- 
ation of space-time, and each hypersurface is called a leaf of the foliation. 
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For a simple example of the concept of "foliation" consider the surface of 
an ordinary cylinder. The surface of an ordinary cylinder is two-dimensional, 
and it can be foliated by a sequenc e of circles perpendicular to the axis of 
the cylinder. The cylinder is then just all of these circles stacked on top of 
one another. Each circle is a leaf of the foliation, and the foliation is all of 
the circles together. 

Any physically realistic cosmology can be foliated uniquely by Cauchy 
hypersurfaces of constant mean extrinsic curvature, and it is this foliation 
that defines the unique global time. The extrinsic curvature of a spacelike 
hypersurface is its relative rate of expansion in time. This relative rate of 
expansion is measured by the Hubble parameter  H - ( l / R ) d R ~ d r  used 
extensively in describing the Friedman universe. However, in a general 
cosmology it is possible for the universe to expand faster in some directions 
than others, so the Hubble parameter must be generalized into a tensor in 
order to express this direction dependence properly. This tensor is the 
extrinsic curvature. The mean extrinsic curvature is a scalar like the Hubble 
parameter, and it is an average of the extrinsic curvatures in the three spatial 
directions [more exactly, it is the contraction of the extrinsic curvature, 
which is a rank-two tensor; see Hawking and Ellis (1973) or Marsden and 
Tipler (1980) for a precise definition]. A constant mean curvature hypersurface 
is a spacelike hypersurface on which the mean extrinsic hypersurface is the 
same at every point. The hypersurfaces of homogeneity and isotropy in the 
Friedman universe are constant mean curvature hypersurfaces in which the 
mean curvature is 3H. Since the universe is in fact closely isotropic and 
homogeneous, the constant mean hypersurface defining the global instant 
"now" over the entire universe essentially coincides with the spacelike 
hypersurface in which the 3 K background radiation is constant. The Earth 
is currently moving at about 350 km/sec with respect to this globally defined 
rest frame of the universe. 

The most important physical factor in the dynamical evolution is the 
scale factor R ( t ) ,  which is a rough measure of the size of the universe. For 
spacetimes that are approximately homogeneous and is~tropic over most 
of their history, the time behavior of R ( t )  is governed by a generalized 
Friedman equation (Ellis, 1973; Barrow and Turner, 1970) along with an 
evolution equation for the shear tensor trab (which is just the trace-free part 
of the extrinsic curvature) of the timelike geodesic congruence normal to 
the Cauchy hypersurfaces (the shear o- is defined by o -2= o-abo-ab ----- 0): 

_R2/ R2 = ( 87rG/ 3 )(p,.  + pr) + O -2 -- k /  R 2 (2) 

b=R-3{ ~ [~3'R~ ' b } --StSa (3)R]R-3 dt (3) o-a 

where E.b is time-independent (E~bE "b =--- E 2) and the quantity in (3) under 
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the integral is the anisotropic part of the spatial three-curvature (the three- 
curvature of the Cauchy hypersurface is written (3)R); k = +1 if the universe 
has spatial topology S 3, and k = - 1  or 0 if it has the topology R 3 ( k = 0  if 
and only if the Cauchy hypersurfaces are flat). Cosmologists will often 
reserve the term "open universe" for the k = - 1  open universes, and call 
the k = 0 open universes "flat universes." The term o -2 measures the energy 
in the form of anisotropic gravitational shear, or, roughly speaking, the 
energy in the form of very long-wavelength gravitational waves. 

The shear evolution equation (3) shows that, in general, o- has two 
sources, a kinematic Newtonian component E 2 / R  -6 associated with the 
isotropic part of the curvature, and a non-Newtonian part associated with 
the spatial curvature anisotropy. In the most general ever-expanding 
anisotropic cosmological models it is this anisotropic curvature term that 
tends to dominate the dynamics at late times. In these open models, it 
typically contributes a shear evolution o -2 ac R-2 as its dominant term at late 
times. In the recollapsing closed models, the ]~2R-6 term is the dominant 
term most of the time near the final singularity (all other terms are relatively 
small in each "Kasner epoch"--def ined be low--and a generic recollapsing 
closed universe is in such an epoch most of the time). 

The term pm is the density of the matter particles, which travel on 
timelike curves. Examples are electrons, protons, human beings, and black 
holes. It can be shown that Pm= C/R  3, where C is constant. The term p~ 
is the density of massless particles, which travel along null curves. It is thus 
composed of all nongravitational radiation fields: photons and massless 
neutrinos, for example. It can be shown that p, = D / R  4, where D is a 
constant. (Both of the above expressions of the matter and radiation densities 
in terms of the scale factor assume that there is no significant conversion 
of matter into radiation or vice versa. Even if such conversion occurs, neither 
density can drop off faster than R -4, which is the important point for our 
purposes.) At present, the p,, term is the most important term in (2), so the 
present-day universe is said to be "matter-dominated." 

One can obtain (Tipler, 1976b) some very general constraints on the 
long-term behavior of the matter and shear terms in equations (2) and (3), 
valid even beyond the point at which these equations break down. If the 
spacetime is homogeneous, then in ever-expanding universes (Tipler, 1979b) 

lim inf t2o-z<3/8 (4) 
t ~ q - o O  

If instead the universe ends in a final singularity, then along a timelike 
geodesic that terminates in this final singularity at proper time t I we must 
have (Tipler, 1977) 

lim ( ty - t)2[8~rG( T~b - �89 V ~ V  b + o-2] ~<�89 (5) 
t~t f  
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Roughly speaking, these inequalities say that the shear cannot drop off 
slower than 1/ t  2 if the universe expands forever, and the shear and matter 
energy densities cannot increase faster than 1/t  2 near the final singularity 
if it recollapses. Conversely, there is considerable evidence (Barrow and 
Tipler, 1978; Collins and Hawking, 1973) that as a general rule one can 
compute R(t) in a given regime from the requirement that the dominant 
term for that regime in the generalized Friedman equation (2) dies off or 
grows as 1/t 2. For example, in a matter-dominated regime, p,, oc R -3 is the 
dominant term by definition, the rule R-3oc t -2 implies R(t)oc t 2/3. For a 
radiation-dominated regime, R-4oc t -2 gives R(t)oc t 1/2. Spatially flat uni- 
verses (k = 0) will always be either radiation- or matter-dominated, since 
the only other term in (2), the shear, is apparently zero near the initial 
singularity. Universes that are not spatially flat (those universes with k = • 1) 
will have regimes where the radiation dominates, the matter dominates, the 
spatial curvature (the k /R  2 term) dominates, and the shear dominates. If  
the spatial curvature or R -2 shear term dominates--as it will in the far 
future of an open ( k = - 1 )  universe--R-20c t -2 gives R(t)oc t. Although Y~ 
is very small today, it is likely to be nonzero, and so near the final singularity 
in a closed universe, the R -6 shear term will dominate eventually, and in 
this regime the rule R - 6 o c  t -2 gives R(t) oct 1/3. All of the above functional 
dependences of  R(t) in the various regimes, obtained via the rule, are in 
fact the correct temporal variation most of the time in spatially homogeneous 
models. The rule fails to give the correct behavior for R(t) only in the 
spatial curvature-dominated regimes of closed universes; in particular, 
where R(t) is near the radius of maximal expansion. In these regimes, R(t) 
is not a simple power of  t. 

There are two terms, the R -2 shear term and the spatial curvature term 
k /R  2, either of which could be thedominant  term in the far future of open 
( k = - 1 )  universes. In fact, both are important in generic open universes. 
Whenever R(t) varies as a power of t i.e., whenever R(t)oc t n, where n is 
some positive constant, the Hubble parameter H - R ' / R  will vary as H oc 
1/t, whatever the value of  the constant n. The shear term will be important 
unless the distortion o- /H oc trt goes to zero asymptotically; it can be shown 
(Barrow and Tipler, 1978; Collins and Hawking, 1973) that this does not 
occur generically, so the shear term remains important in almost all open 
universes. 

Both of  the R -2 terms are absent in the spatially flat, ever-expanding 
universes, so the long-term evolution of these universes will be either matter- 
or radiation-dominated. I shall show in Section 3 tkat for the most part 
these universes will be matter-dominated as the universe is now, except for 
a brief period 1030 years in the future. 

The generic behavior of  closed universes in the R -6 shear-dominated 
regime near the final singularity is particularly interesting, at least in closed, 
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spatially homogeneous universes. We have very little knowledge about the 
behavior of  inhomogeneous closed universes in this regime; I can only hope 
it is qualitatively similar to the homogeneous case. 

In a homogeneous closed universe with topology S 3 (the only closed 
universe topology I shall consider) the shear measures the rate of change 
in the distortion of the three-sphere. When the shear cr is identically zero 
at all times the closed universe is isotropic, which means the proper distance 
around the universe is the same in all directions. If  the shear is nonzero, 
the proper distance around the universe at any given time depends on the 
direction in space. In developing a feel for the physical meaning of shear, 
it is instructive to visualize what shear means for a two-sphere. Imagine an 
observer standing at a point on the two-sphere--the north pole, say--and 
looking out long two mutually perpendicular great circles through that 
point. If  the sphere is undistorted, the lengths of the great circles will be 
the same. If the sphere is distorted into an ellipsoidal figure, the length of 
one great circle will be longer than that of the other. 

Suppose the two-sphere universe is shrinking in area as it goes into a 
final singularity (where the area is zero). The shear measures the rate of 
change of the distortion, so a nonzero shear means that as our two-sphere 
universe gets smaller, the lengths of the great circles change their size at 
different rates: the universe changes its size differently in different directions. 
A contracting universe means the area is decreasing, but it is quite possible 
for the length of one great circle to increase, and still the overall area will 
decrease if the other length decreases even faster. 

The behavior of the three-sphere universe is qualitatively the same. In 
three dimensions there would be three mutually perpendicular great circles. 
A nonzero shear means these great circles are changing their lengths at 
different rates. The typical situation is for two of the great circles to get 
smaller very rapidly while the other gets longer, with the net volume of the 
universe to decrease. When a recollapsing closed universe is decreasing its 
volume in this fashion--expanding in one direction while decreasing in the 
other two directions--we say it is in a Kasner epoch. The direction of 
expansion is constant throughout the Kasner epoch. 

But the universe generally does not remain in a given Kasner epoch 
all the way in to the final singularity. Rather, the rate of expansion of the 
expanding great circle will after a time rapidly decrease to zero, and the 
rate of contraction of the other two great circles will also rapidly decrease. 
Then the previously expanding great circle starts to contract at a faster and 
faster rate, and one of the previously contracting great circles begins to 
expand. We can equally well express this by saying that an overall contract- 
ing universe expands in one direction while contracting in the other two. 
The direction of expansion is constant most of the time, but at certain times 
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it suddenly changes. Each regime in which the direction of expansion is 
constant defines a given Kasner epoch. To repeat: most of the time the 
collapsing universe is in a Kasner epoch when trzcc R -6oC t -2 is the dominant 
term in equation (2). The evolution of a recollapsing closed universe during 
both the Kasner epochs and during the short periods of transition between 
Kasner epochs is discussed at length in Ryan and Shepley (1975). For 
evolution during the Kasner epochs, see Chapter 30 of Misner et al. (1973). 

This direction dependence of expansion/contraction means the tem- 
perature of the background radiation will depend on direction also. The 
radiation coming from the expanding direction will be red-shifted, while 
the radiation coming from the contracting direction will be blue-shifted. 
The precise direction dependence of the temperature is a rather complicated 
function of the optical depth of the universe at the time. (The optical depth 
measures the distance a radiation particle can travel before being absorbed.) 
Approximate formulas have been obtained by Thorne (1967), Misner ( 1968 ), 
and Matzner (1971). For small optical depths--the expected case near the 
final singularity--the formula simplifies enormously to 

T(n) = (To/R)/{[exp(~)]~ninl} 1/2 (6) 

where n i is a unit vector in the direction the temperature is measured, 
To/R(t) is the temperature averaged over all directions [we put in a factor 
R(t) explicitly to indicate that this average temperature scales with the 
universal scale factor; To is a constant], and the exponential factor is a 
direct measure of the ratios of the proper distances around the universe in 
the three directions. The variation in temperature with direction will be the 
same at every point in a homogeneous universe. The temperature difference 
in different directions is a manifestation of the shear gravitational energy, 
since it is the shear that generates a nonzero/3 (we actually have o'ab =/3 %, 
where the prime denotes the time derivative). The temperature difference 
can in principle provide an energy source for computation in a closed 
universe near the final singularity. 

The extremely rapid contraction in one direction in a shearing universe 
can cause the disappearance of the horizons in that direction. This fact will 
be crucial for computation in closed universes, because horizons are the 
ultimate barriers to communication in space-time. 

A horizon is said to exist if there are regions of space that cannot send 
light signals to each other. If the regions cannot send light signals, then 
they cannot send signals of any sort, which means it is impossible for them 
to communicate. But to determine that regions cannot communicate, it is 
necessary to know the entire future history of the regions, for it may be 
that the signals merely take a very long time to traverse the distance between 
the regions, rather than being completely unable to traverse the distance. 
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Roger Penrose develop,'d in the 1960s a method to easily visualize the 
entire future (and past) history of a universe, even if that future and past 
are infinite! A cosmological model is described by its metric ds 2 = gabdxadx b, 

which may define an infinite space-time volume. Penrose's idea is to replace 
the coordinates x ~ with new coordinates x 'a such that the points at infinity 
in the old coordinates are at a finite distance in the new coordinates. 
Furthermore, the new coordinates must be chosen so that 

ds 2 = 122 ds,2 (7) 

where 12 is a function of the new coordinates satisfying various conditions, 
which are not important for our purposes. Now the metric ds '2 covers the 
whole of the space-time represented by ds  2 in a finite range of its coordin- 
ates; the possible infinities in space and time in the original coordinates 
have been transferred into the function 12. Two metrics ds 2 and ds '2 are 
said to be conformal ly  related if they satisfy (7). This means for space-times 
that the causal structures--whether regions in the space-time can communi- 
cate, or more precisely whether events can be connected with causal (timelike 
or null) curves--are exactly the same in the metrics ds  2 and ds '2. Thus if 
we are interested in the causal structure of the original metric ds 2, all we 
have to do is throw away the function 12 and study the metric ds '2 in a 
small, finite region, for in this region the causal structures will be exactly 
the same. 

The conformal metrics ds '2 for a number of key cosmological models 
have been computed, and the region conformal to the entire original cosmo- 
logical model can be drawn as a two-dimensional figure called a Penrose  
d iagram (or conformal diagram), in which the time dimension and one of 
the three spatial dimensions appear in the figure. The Penrose diagram for 
the open and the flat Friedman universes is shown in Figure 1, the Penrose 
diagram for the closed Friedman universe is shown in Figure 2. and the 
Penrose diagram for the static Einstein universe is shown in Figure 3. 

The causal conventions in Penrose diagrams are the same as in Min- 
kowski diagrams: lines at 45 deg off the vertical are the paths of light rays, 
timelike curves are those whose tangents are less than 45 deg off the vertical, 
and spacelike curves are those whose tangents are greater than 45 deg off 
the vertical. Time increases vertically upward, and the horizontal direction 
is a space direction. 

The boundaries of  a Penrose diagram represent what are termed c- 
boundaries  of the cosmological models. The c-boundaries are composed of 
the singularities and the points at infinity; the c-boundary of a cosmology 
is the edge of spacetime, the "place" at which space and time begin. By 
convention, singularities are represented by double lines in Penrose 
diagrams. As can be seen in Figure 2, the initial and final singularities are 
the only c-boundaries in a closed Friedman universe. An open Friedman 
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Fig. 1. Penrose diagram for the open and the flat Friedman universes. The horizontal double 
lines at the bottom of the figure denote the initial singularity. The dashed vertical line denotes 
the origin of spatial coordinates. For all Penrose diagrams, the conventions for representing 
timelike, null, and spacelike lines are the same as for Minkowski diagrams. Each point in the 
diagram represents a 2-sphere except for the world-line of the origin of coordinates, each 
point of which represents a point. Two observer world-lines are pictured, and those are for 
observers which are at rest with respect of the background radiation, or equivalently, which 
have world-lines normal to the foliation of constant mean curvature. All observers who do 
not accelerate to the speed of light come together in the infinite future at i +, future timelike 
infinity. All outgoing light rays hit t + (scri plus) at infinite future time. Two leaves (two 
t = constant hypersurface~) of the constant mean curvature foliation are pictured. Each leaf 
defines a global "now," and each leaf hits i ~ at spatial infinity. The jagged dotted line connecting 
the two observers denotes light signals being sent back and forth between the two observers. 
An infinite number of such signals can be exchanged between any "now" and future timelike 
infinity. 

un ive r se ,  o n  the  o the r  h a n d ,  has  fou r  d i s t inc t  c - b o u n d a r y  s t ruc tures :  a n  
in i t ia l  s i ngu l a r i t y  ou t  o f  w h i c h  the  en t i re  s p a c e - t i m e  arose,  oc45-deg l ine  
5 § (ca l led  "scr i  p l u s " )  r e p r e s e n t i n g  " n u l l  i n f in i ty , "  wh ich  are the  po in t s  
at in f in i ty  tha t  l ight  rays (nu l l  curves)  r each  af ter  inf in i te  t ime,  a n d  a s ingle  

p o i n t  i § w h i c h  all t ime l ike  curves  a p p r o a c h  for  all  f ini te  t imes,  a n d  r each  
af ter  inf in i te  t i m e  (wi th  the  ex cep t i o n  o f  those  t imel ike  curves  tha t  acce le ra te  
forever  a n d  thus  a p p r o a c h  a rb i t ra r i ly  c lose ly  to the  speed  o f  l ight.  These  
curves  hi t  scri  p lus  r a the r  t h a n  i § at t e m p o r a l  inf in i ty) .  

The  Pen rose  d i a g r a m  a l lows us  to def ine  r i go rous ly  the  n o t i o n  o f  " the  
b e g i n n i n g  o f  t i m e " - -  the  pas t  pa r t  o f  the  c - b o u n d a r y - - a n d  the  " e n d  o f  
t i m e " - -  the  fu tu re  pa r t  o f  the  c - b o u n d a r y .  U s i n g  the  c - b o u n d a r y ,  we c a n  
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Fig. 2. Pentrose diagram for the closed Friedman umverse. The conventions for timelike, 
null, and spacelike curves are as in Figure 1. The initial and final singularities are denoted by 
double lines. Each point in the diagram except for those on the dashed lines denotes a 2-sphere. 
The points on the dashed lines denote single points. The two t = const hypersurfaces which 
are pictured denote constant mean hypersurfaces. Each such hypersurface is a 3-sphere. The 
two dashed vertical lines are thus the world-lines of origin of coordinates and the antipodal 
points of a 3-sphere. Two observers at rest with respect to the background radiation are shown, 
and, as in Figure 1, the jagged dotted lines denotes light signals being exchanged between the 
two observers. In contrast to the case in the open and fiat Friedman universes, only a finite 
number of signals can pass between the two observers before they hit the final singularity. 
This will be true no matter how close the two observers are. 

even  def ine  the  t o p o l o g y  o f  the  " the  b e g i n n i n g  o f  t im e"  a n d  " the  e n d  of  
t ime"  in  c o s m o l o g i c a l  mode l s .  I n  the  c losed  F r i e d m a n  un ive r se ,  the  in i t i a l  
a n d  f inal  s ingu la r i t i e s  b o t h  have  t o p o l o g y  S 3, whi le  the  in i t ia l  s ingu la r i t y  
in  the o p e n  a n d  fiat F r i e d m a n  un ive r ses  has  t o p o l o g y  R 3. In  these  very  
specia l  space t imes ,  it is even  poss ib le  to p u t  a me t r i c  o n  the  s ingular i t i es ,  
b u t  in  gene ra l  this  wil l  n o t  be  poss ib le .  I t  can  be  s h o w n ,  however ,  tha t  if  
the  u n i v e r s e  is g loba l ly  hype rbo l i c ,  t h e n  there  is a n a t u r a l  Hausdo r f f  t o p o l o g y  
o n  the  c - b o u n d a r y  o f  the  space t ime  ( H a w k i n g  a n d  Ell is ,  1973). 

Two  observers  c an  c o m m u n i c a t e  for  all  t ime  o n l y  i f  they  can  s e n d  l ight  
s ignals  b a c k  a n d  for th  to o n e  a n o t h e r  indef in i te ly .  I f  two observers  lose the  
ab i l i ty  to s e n d  l ight  rays b a c k  a n d  forth,  we say tha t  a n  event horizon has  
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Fig. 3. Quasi-Penrose diagram for the Einstein static universe. The t = const hypersurfaces 
are 3-spheres, as in the closed Friedman universe. The curved line at the top and bottom of 
the figure indicate that the figure continues on indefinitely. The pictured observer world-lines 
remain equidistant from each other for infinite proper time, so an infinite number of signals 
can be exchanged between any two observers. Thus the future c-boundary of an Einstein static 
universe is an omega point. 

fo rmed  be tween  them. It  is i m m e d i a t e l y  a p p a r e n t  f rom the Penrose  d i ag rams  
tha t  in an open  and  in a flat F r i e d m a n  universe ,  no hor izons  form and  tha t  
any  two observers ,  r ep resen ted  by  t imel ike  curves,  can send an  infinite 
n u m b e r  o f  l ight  rays back  and  forth be tween  now and  the t ime when i + is 
reached ,  because  in the Penrose  d iagram,  the  t imel ike  curves get  c loser  and  
closer  toge the r  as i + is a p p r o a c h e d .  In  contras t ,  event  hor izons  do form 
be tween  any  two observers  in the d o s e d  F r i e d m a n  universe.  In  F igure  2, 
the  wor ld - l ines  o f  comoving  observers  are shown as ver t ical  l ines,  and  no 
mat te r  how close  the observers  are, there  will  come a t ime at which  it will 
no longer  be poss ib le  to connec t  the two lines with a 45-deg line, which  
represents  a l ight  ray; the  final s ingular i ty  is r eached  before  a l ight  ray  f rom 
one observer  can reach  the other.  It is s imply  imposs ib le  for  compu ta t i on  
to con t inue  indef in i te ly  in a c losed  F r i e d m a n  universe  because  it wou ld  
eventua l ly  b e c o m e  imposs ib le  for  a c o m p u t e r  in such a universe  even to 
send signals  to different  par ts  o f  itself! 

But no t  all c losed  universes  have a c - b o u n d a r y  structure,  or  ra ther  a 
final s ingular i ty ,  l ike the  c losed  F r i e d m a n  universe .  The F r i e d m a n  final 
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singularity will occur only when the shear is zero, and as I pointed out 
earlier in this section, not only is the shear in generic closed universes not 
zero, it is in fact so large that the evolution of the universe will be dominated 
by the shear near the final singularity. What can happen is that a shear- 
dominated closed universe can contract so much faster in one direction 
than a Friedman universe that it becomes possible for light signals to circle 
the universe in that direction; it is possible to communicate in that direction, 
and relativists say that the horizon disappears (temporarily) in that direction. 
Note that it is possible for a horizon to disappear in a given direction and 
for there still to be an event horizon in that direction. The event horizon 
disappears also only if it is possible to send signals back and forth in that 
direction not just once but an infinite number of times. However, if the 
direction in which the horizon disappears alternately covers all directions, 
and covers them infinitely many times before the singularity is reached, 
then it is possible for all observers to send light rays infinitely often back 
and forth before the singularity is reached. In such a universe there would 
be no event horizons, and there would be no communication barriers to 
unlimited computation. 

Now, two points are defined as distinct in the c-boundary only if there 
are timelike curves that reach these two points and are not contained in 
the chronological pasts of each other. If  all event horizons disappear, then 
all timelike curves are in the chronological past of each other. Thus the 
future c-boundary of a universe with no event horizons must consist of  just 
a single point; I shall call such a point an omega point. 

Two simple examples of cosmological models with an omega point are 
the Einstein static universe (Figure 3) and L~bell space (Hawking and Ellis, 
1973). L6bell space is a spacetime constructed by identifying Minkowski 
space in a certain way to obtain three-torus spacelike hypersurfaces with 
constant mean extrinsic curvature. These hypersurfaces are Cauchy hyper- 
surfaces for LSbell space. The omega point in LSbell space is a singularity, 
and it is reached in finite proper time. 

In contrast, the omega point in Einstein space is reached only after 
infinite proper time. It is easy to see from Figure 3 that a light ray can be 
sent from one observer to another an infinite number of times. Figure 3 
gives picture of the causal structure of Einstein space, but it is ditterent 
from the other Penrose diagrams in that the point at temporal infinity--the 
omega point-- is  not brought into a finite distance. A true Penrose diagram 
for Einstein space, with the omega point brought into a finite distance, has 
been constructed by Tipler (1986). The future part of this diagram is the 
same as the future part of the diagram for a closed S 3 universe which begins 
in an initial singularity like the closed Friedman universe, but approaches 
the Einstein static universe asymptotically in the future. The Eddington- 
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Lema~tre-Bondi universe is a closed S 3 universe which has just this temporal 
behavior. The Penrose diagram for an Eddington-Lema~tre-Bondi universe 
is given in Figure 4. As in the open universe, the timelike curves in the 
Eddington-Lema~tre-Bondi universe come closer and closer together as 
the omega point is reached, so that light rays can pass an infinite number 
of times between these curves. Penrose diagrams are completely accurate 
only for spacetimes with spherical symmetry--such symmetry allows two 
angular coordinates to be suppressed without loss of information--but the 
causal structure of  any closed universe that begins in an initial Friedman- 
like singularity and ends in an omega point would look qualitatively like 
Figure 4. 

Seifert (1971) has proved that spacetimes in which the future c-boun- 
dary consists of a single point must have a compact Cauchy surface. That 
is, cosmologies with an omega point must be closed globally hyperbolic 
universes. Although open universes like the Friedman universe pictured in 
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Fig. 4. Pentrose diagram for an Eddington-Lema~'tre-Bondi universe, a spacetime with an 
initial singularity and an omega point. It represents a closed universe in which computation 
is not limited by event horizons, since every observer can communicate with every other 
observer an infinite number of times. 
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Figure 1 have a c-boundary point i § to which all nonaccelerated timelike 
curves terminate, these spacetimes do not contain an omega point. For scri 
plus also forms part of the future c-boundary, and as I mentioned above, 
there are timelike curves that terminate on scri plus. Other interesting general 
restrictions on spacetimes with an omega point have been obtained by Budic 
and Sachs (1976). 

The spatially homogeneous Bianchi type IX model [see Ryan and 
Shepley (1975)] for an extensive discussion of its properties), which is a 
shearing closed universe with Cauchy hypersurfaces having topology S 3, 
was extensively investigated during the late 1960s by relativity groups in 
the United States, the United Kingdom, and the Soviet Union to see if the 
horizons in this model disappeared in the past. The conclusion was that it 
is possible for the horizon to disappear in one direction once, but even this 
is a rather improbable occurrence in a generic Bianchi type IX model. The 
probability that horizons will disappear in all directions an infinite number 
of times as the singularity is approached was never actually rigorously 
calculated, but there are indications that this probability is zero in the 
vacuum models. Which is to say, there could be Bianchi type IX models 
that have an omega point, but if these models exist, they are of measure 
zero in the initial data space of the Bianchi type IX vacuum models. Putting 
in perfect fluids does not change this conclusion, but it is possible that more 
exotic forms of matter could result in an omega point being more likely. I 
shall assume that a solution to the Einstein equations with an omega point 
exists. 

The Bianchi type IX models were considered only as models of  the 
past singularity. But the evidence is strong (Barrow and Matzner, 1977) 
that the initial singularity was probably shear-free, so the closed Friedman 
universe with its regular S 3 topology singularity is a more accurate model 
of  the past than the shearing Bianchi type IX. However, the final singularity 
is by contrast almost certain to be dominated by shear, and so the appropriate 
use of the Bianchi type IX model is as a model of  the actual universe near 
the final singularity, not the initial singularity. 

In the homogeneous Bianchi models, the final singularity is all-encom- 
passing. It is occasionally suggested that the final singularity in an 
inhomogeneous closed universe need not be all-encompassing, but a globally 
hyperbolic closed universe that begins to recollapse must terminate in 
all-encompassing final singularity. In other words, every observer would 
end in this final singularity, as stated in Theorem 2 below. [The hypersurface 
of maximal expansion of a universe that begins to recollapse is called a 
"maximal hypersurface." A maximal hypersurface is defined to be a hyper- 
surface with constant mean curvature everywhere equal to zero. Theorem 
2 is proved in Masden and Tipler (1980).] 
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Theorem 2. If a closed universe obeying the strong energy condition 
contains a maximal hypersurface, and if on this hypersurface (1) is a strict 
inequality when V a is the normal to the hypersurface, then every timelike 
curve has proper time length less than C, where C is a universal constant. 

3. THE EVOLUTION OF MATTER IN THE FAR FUTURE 

At the present time stellar births are still occurring, but rates are 
decreasing exponentially, with a half-life of about 5 x 109 years, due to 
exhaustion of primordial hydrogen and dissipation of gas from the galaxy 
(Trimble, 1975). In 1012 years, star formation will have ceased. Galaxies 
will become redder, as the hotter, more massive stars leave the main 
sequence. The later M-type stars will exhaust their hydrogen cores and also 
leave the main sequence in about 1014 years. Thus after about 10 ~4 years, 
stars will cease to be available energy sources for computation. 

The dynamical evolution of stellar and galactic systems in the period 
101s-1025 years hence will be dominated by decay via emission of gravita- 
tional radiation and evaporation of the system's subcomponents (Barrow 
and Tipler, 1978; Dyson, 1979; Islam, 1977, 1979). The latter process gives 
the shorter time scales. For example, the average time required to detach 
a planet from a star by a close encounter with a second star is given by 

r u  = ( n W )  -1 (8) 

where n is the number density of stars, V is the average relative velocity 
of two stars, and o, is the cross section for an encounter resulting in 
detachment. A rough guess for the cross section would be tr = 2qrr 2, where 
r is the distance of closest approach. The Earth and the other planets would 
probably be detached if another star went between us and the sun, so for 
detachment of our solar system's planets, I take t r = 2 x 1 0 1 6 k m  2. In the 
vicinity of our solar system, we have at present n = 3 x 10 -41 km -3 and 
V = 50 km/sec,  which gives 

r N ---- 10 t5 years (9) 

Serious disturbance of the solar system will result from encounters on a 
time scale shorter than (9). 

Close stellar encounters will also result in the escape of some stars 
from the galaxy, since some encounters would result in some stars attaining 
escape velocity. The details of  such losses are exceedingly complex because 
of subtle relaxation effects (Saslaw, 1973), but the time scale will be closely 
related to the relaxation time for gravitational encounters (Saslaw, 1973, 
1974; Chandrasekhar, 1960; Spitzer and H~ira (1958). A very rough estimate 
of the time scale for evaporation of stars from stellar systems has been given 
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by Dyson (1979). In a system of N stars of  mass M in a volume of radius 
R, the root mean square velocity of  the stars will be of the order of  

V = ( G N M / R )  1/2 (10) 

The cross section for a close encounter between stars in this system is 

o" = ( G M /  V2) 2 = ( R /  N )  2 (11) 

We obtain the average time between close encounters by inserting (10) into 
(8): 

TN = (nVo') -1=  ( N R 3 / G M )  1/2 (12) 

For a typical galaxy, we will have N = 1011 and R -- 3 x 1017 km, so 

T = 1019 years (13) 

With the above numbers, the cross section (11) corresponds to a closest 
approach of about 10  6 km, which is much closer than required to disrupt 
a solar system. (The stars involved in the collision actually collide.) The 
time scale for the dynamical relaxation of the stellar system is 

T R = T/log N (14) 

or TR = 1018 years for a typical galaxy. Using the same formulas, we can 
calculate that clusters of  galaxies will evaporate galaxy-size objects in -1011 
years and stellar-sized ones in - 1 0 2 3  years. The evaporation of objects from 
the system will leave the system's total energy more negative than before, 
since the objects leaving the system will almost always have positive energy. 
The system will thus become more tighly bound as time goes on. 

Another mechanism which leads to positive energy loss to the system 
is gravitational radiation. A mass orbiting around a fixed center with velocity 
V, period P, and kinetic energy E will lose energy by gravitational radiation 
at the rate (Misner et al., 1973; Landau and Lifschitz, 1975) 

d E / d t  = V S ( E / P )  (15) 

where units are such that all velocities are measured in units of  the velocity 
of  light c, and G = 1. Thus the time scale for orbital decay via gravitational 
radiation emission is 

T = E / ( d E / d t )  = V - S P  (16) 

For the Earth orbiting the sun, (16) gives T = 1020 years. For our sun's orbit 
around the galactic center, with V =  200 km/sec  and P = 2 • 108 years, the 
time scale is 1024 years. We can use (16) to obtain the time scale for the 
emission of  all rotational energy of any bound system by equating gravita- 
tional energy M 2 R  -1 with the rotational energy to get P and V. This gives 
a lifetime of Barrow and Tipler (1978) 

Tgrav ~ G - 3 R 4 M  -3 (17) 
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where I have reinserted the gravitational constant G to show its power 
dependence. The time scale for a large 1015 M| cluster to radiate away all 
its energy is - 1019 years. 

The final state after the objects are evaporated and rotational energy 
has been radiated away is probably a black hole. Dead stars with mass 
exceeding the Landau-Chandrasekhar  limit, MLC-- G3/2mN2~ 1.5M| will 
be the first objects to become black holes, but galaxies and the largest bound 
configurations--these typically are of order 1017M| eventually follow 
them on the above time scales. 

If the universe recollapses, there will be another period when the above 
effects will be important: that period over which the universe contracts from 
1025 years before the final singularity to 105-101~ years before the final 
singularity. The lower bound is difficult to predict, because the shear--long- 
wavelength gravitational waves and curvature anisotropy--will  play a 
dominant role in the evolution of the final state (since o-2oc R -6)  and just 
at what point the shear will dominate the evolution depends in a very 
complicated way on the exchange of energy between the R -6  and the R -2 
shear terms in equation (3). However, such exchange will be significant in 
a closed universe only if the universe is very long-lived [with density 
parameter ~ o - 1  ~10  -6 or less; see Misner et al. (1973) or any other 
elementary cosmology text for the definition of the density parameter. If 
the density parameter f~o = 1, the universe is fiat; if l )o< 1, it is open; and 
if f~0 > 1, it is closed.] The classical evolution of a closed universe in the 
case when Fro-1 = O(1) has been discussed by Rees (1969). When llo is 
this large, stars will survive until they are disrupted near the final singularity. 
The cosmological background radiation will equal the surface temperature 
of stars when t ~ 105 years before the final singularity. A star will be disrupted 
when the background radiation equals the temperature of the star's central 
region at t ~ 10 -1 years before the final singularity. Stellar collisions are 
never a significant factor in stellar disruption. Radiation or neutrino pressure 
will tend to damp out inhomogeneities on scales shorter than the Jeans 
length, which, if I I o -  1 ~ O(1), corresponds to a mass of -M |  In such a 
short-lived closed universe, the stars have insufficient time to contribute 
significantly to the entropy of the universe, so the temperature near the final 
singularity will go as T =  [Rnow/R(t)] (3 K), where Rnow~-2x 101~ light- 
years is the present-day value of the scale factor. The important time scales 
near the final singularity of a short-lived closed universe are summarized 
in Table I. 

In very long-lived universes, it is possible for stellar radiation to make 
a significant contribution to the universal entropy and energy density, 
because in such universes the radiation can be emitted at times when the 
big bang radiation has been redshifted to very low temperatures: a stellar 
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Table I. Time Scales in Small, Closed Universe near Final Singularity ~ 

Universal scale Temperature 
Event factor R(t) (K) 

Galaxies merge 
Sky as bright as the sun's surface 
Sky as hot as stellar cores; stars explode 
Nuclei disintegrate into neutrons and protons 
Protons and neutrons become free quarks 

10-2Rnow 300 
10-3Rnow 3000 
10-6Rnow 3 • 106 
10-9Rnow 3 • 109 
10-t2R~o w 3 x 1012 

~This table applies only to small closed universe, i.e., closed universes that begin to contract 
less than 1011 years after the initial singularity. For much larger closed universes, those that 
do not begin to contract until 10 3~ years after the initial singularity, the temperature near the 
final singularity will increase as 1/R(t); but only the elementary particles e +, e-, ~, ~,, and y 
will exist to be heated. Furthermore, the additional radiation from stars at late times will 
change the constants in the temperature formula T=(3 K)R~ow/R(t). Closed universes 
intermediate in size will have a mixture of dead stars, black holes, and gas which will be 
heated. Rno w is the value of the universal scale factor at the present time. 

p h o t o n  in this env i ronmen t  will  make  a very large con t r ibu t ion  to the  
en t ropy  when  it is the rmal i zed  near  the final s ingular i ty .  

The t ime scales so far  cons ide red  have been  governed  ent i re ly  c lass ical  
mechanics ,  inc luding  genera l  relativity.  In  the  very long run,  the  impor t an t  
t ime scales arise f rom the decays ,  due  to quan tum effects, o f  var ious  mat te r  
s tructures.  

The mos t  impor t an t  decay  bo th  in terms o f  its cosmolog ica l  consequen-  
ces and  in terms of  its s ignif icance for  life is p ro ton  decay.  Fo r  example ,  
i f  the SU(5)  G U T  is correct ,  the  p ro ton  will  d is in tegra te  into lep tons  and  
photons .  There  are  a n u m b e r  o f  decay  b ranches  via  var ious  shor t - l ived 
par t ic les ,  bu t  the end resul t  is 

p ~ e + + u +  9 + y  (18) 
n ~  e + + e - +  1:+ 9 +  3' 

D e p e n d i n g  on  the decay  mode ,  there  will  be different  numbers  o f  the four  
par t ic les  on  the rhs o f  (18), subject  to the conserva t ion  o f  B - L ,  where  B 
and  L are the  b a r y o n  and  l ep ton  numbers ,  respect ively ,  and  conserva t ion  
o f  electr ic  charge.  

The p r o t o n  l i fe t ime in the  S U ( 5 )  G U T  is 1030 years,  and  a n u m b e r  o f  
o ther  G U T s  give a s imi lar  l ifet ime. Exper imen t s  have to da te  fa i led  to detect  
the p red i c t ed  p ro ton  decay,  so it may  be tha t  the p red ic t ions  are  wrong.  
Never theless ,  i f  quarks  and  lep tons  t ru ly  lie in the  same mul t ip le t  in a 
unif ied field theory  o f  some sort,  then  it is very l ikely  there  will  be t rans i t ions  
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between various levels of the multiplet, and this will cause proton decay, 
even if the lifetime is longer than 1030 years. I shall therefore assume that 
proton decay occurs, and I shall use the 1030 year time scale of SU(5). If 
proton decay occurs via a different process with a quite longer time scale, 
the qualitative features will nevertheless be the same: the overall decay 
reaction will still be (18), and the thermal and gravitational effects of proton 
decay on macroscopic bodies will be the same except that temperatures 
and evolution rates will have to be scaled appropriately. 

Proton decay provides an energy source for large bodies--dead planets, 
black dwarfs, and neutron stars--which will prevent them from cooling to 
the temperature of the radiation background. Since these bodies are 
effectively electrically neutral, the positrons produced in the reactions (18) 
will be immediately annihilated, so in such bodies the net effect of (18) is 
to turn matter into energy. The energy released in proton decay will keep 
neutron stars at a temperature of 100 K, and black dwarfs and Earth-sized 
planets at 5 and 0.16 K, respectively, for around 1030 years into the future 
(Feinberg, 1981; Dicus et al., 1982, 1983). These numbers are calculated by 
equating the usual cooling law, 

dE/dt = 47rR2o-sB T 4 (19) 

where O-sB is the Stefan-Boltzmann constant, with the power generated by 
proton decay: 

dE/dt = (1 GeV/proton)(#protons/proton lifetime) 

= (6 • 1016 ergs/sec)(M/M| (20) 

White dwarfs cool to black dwarfs at 1 K in 1020 years in the absence of 
proton decay, but proton decay will deep them at 5 K during the period 
1017< t <  1030 years. At the end of 1031 years only about 5 x 10 -5 of the 
original mass of the star or planet will remain: planets will have become 
asteroids and black dwarfs Earth-sized planets, and the process will continue 
until the mass has been entirely converted into energy. By about 1032 years, 
the most massive solid structures, which have a mass of about 10Mo, will 
have completely disappeared. 

As implied by Frautschi (1982), proton decay spells the ultimate end 
for computers based on protons and neutrons. Baryons are disappearing at 
the exponential rate N(t)exp ( -  t/103~ years), where N(t) is the number 
of protons in the structure under consideration, which may be increasing. 
Even if the size of a computer were to expand its volume at the speed of 
light, the number of protons in that volume would increase only as _Nt 2, 
where the constant _N is bounded above by the cosmological baryon number 
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density today, so the maximum value of N ( t )  would be _Nt 3. The exponential 
decrease will eventually defeat the power law increase, and baryon-based 
computers will disappear if the universe is flat or open, or if it is a suffi- 
ciently long-lived closed cosmology. Setting N = 101~176 and _Nt 3 exp (-t~ 1030 
years) = 1 gives t = 1033 years for the time by which all atom-based computa- 
tion must cease. More generally, if the proton lifetime is tp, all atom-based 
computers will have disintegrated by 103tp years. 

The conversion of mass into energy via proton decay can have dynami- 
cal effects on cosmological evolution, for it can change a matter-dominated 
universe into a radiation-dominated one. The cosmological effects of proton 
decay have been investigated by Barrow and Tipler (1978), Page and McKee 
(1981, 1983), and Dicus, et al. (1982, 1983). All of these authors agree that 
if we ignore the possibility of exotic forms of matter, then in all Friedman 
universes, the only matter remaining after 1033 years is an electron/positron 
plasma, which originates enitrely from the protons that did not form clumpy 
matter--stars, planets, asteroids, rocks, dust particles, or any bound group 
of atoms. When protons decay in clumpy matter, the electrons and positrons 
annihilate, as pointed out above, and so cannot contribute to the plasma. 
About 1% of the matter will be in the form of atomic hydrogen beyond 
1020 years, so these atoms will be the source of the electron/positron plasma. 
Dicus et al. point out that in an open universe, there will be a brief period 
between tp and 103tp in which the exponential decay of the protons will 
generate radiation so rapidly from the matter that the universe will be 
radiation-dominated. After that time the matter density of the elec- 
tron/positron plasma will dominate because its density falls off as R -3 while 
the radiation density falls off as R "4. All of the above authors agree that 
in an open universe, the cosmological expansion will be too rapid for the 
electrons and positrons in the plasma to recombine into positronium, at 
least via electrical forces, though Page and McKee raise the possibility that 
gravitational clumping could cause the electrons and positrons to recombine. 
This seems rather doubtful to me because the gravitational and electrical 
forces are both R-2 laws in the distance regime in question. But like particles 
repel electrically, while gravity is always attractive, and, as Page and McKee 
point out, this difference could lead to clumping when many-body interac- 
tions are properly taken into account. 

In summary, taking into account the classical time scales discussed 
earlier in this section, the matter in the universe at 1030 years will consist 
of 90% dead stars and planets being maintaned at a temperature between 
100 and 0.1 K by proton decay; 9% galactic mass size black holes from the 
evapoaration and collapse of galaxies; and 1% atomic hydrogen. All of this 
material will be immersed in a radiation bath of photons and neutrinos, 
whose density relative to matter is increasing due to proton decay. Between 
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1030 and 1033 years the dead stars and planets will disappear, leaving the 
black holes, an electron/positron plasma, and radiation. The radiation 
density will dominate both the plasma density and the black hole density. 
After 1033 years, the radiation density will have decreased sufficiently far 
so that the black holes will be the dominant component of the universe's 
mass density. 

But black holes do not last forever, any more than protons do. Hawking 
(1974, 1975) has shown that quantum effects cause black holes to radiate 
away their mass, with the mass being entirely converted into radiation at 
the end of 1066(M/M| 3 years. Thus galactic mass black holes (101~M| 
will disappear in l099 years, and supercluster mass black holes (1017M| 
will disappear in 101~7years. Barrow and Tipler (1978) argue that the 
evaporation of black holes combined with the expansion of the universe 
will be sufficiently rapid to overcome the increase of black hole mass due 
to black hole coalescence induced by gravitational attraction. Page and 
McKee (1981) regard this question as still open, because of the many-body 
attraction mentioned above. If  Barrow and Tipler are correct, supercluster 
mass black holes will be the most massive black holes ever to form. If so, 
after 10 l~ years the matter in the universe will consist entirely of an elec- 
t ron/posi tron plasma in a radiation bath of neutrinos and photons, as 
Barrow and Tipler were the first to point out. 

Both Barrow and Tipler, and Page and McKee, agree that in a flat 
(k = 0) and in a long-lived closed universe, the rate of expansion of the 
universe will be sufficiently slow so that almost all of  the electrons and 
positrons in the plasma will recombine. The particles will recombine into 
positronium when the total energy of an electron-positron system becomes 
negative. The only energies the particles have in a flat universe are the 
Coulomb energy of attraction and the random thermal energy of motion. 
The thermal energy of  the electrons and positrons comes from the energy 
of proton decay. The rms initial momentum P of the electron or positron 
produced in a proton decay will be P = yme, where me is the mass of  the 
electron (and c = 1); probably y ~  mp/2rnp ~ 103, where mp is the proton 
mass. This initial momentum will redshift as ymetpR -1, where the constant 
n is defined by R(t)oz t n. Thus the thermal kinetic energy will scale with 
the expansion of the universe as Er.~p2/me~ 'y2met2nR -2. If at tp the 
fraction of the mass in e • isfe, the number density N of the e • will decrease 
because of the expansion of the universe as N ~ f e m e l R  -3, and the average 
distance between e will grow as r -  N -1/3 1 / 3 ~ 1 / 3  D - - f~  me ~x. The sum of thermal 
energy and Coulomb energy is thus 

y2met2~R-2- e2fle/3 g-1  (21) 

If we assume a matter-dominated flat universe where R(t)oc t 2/3, (21) will 
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go negative at 

tb ~ (1078 years)f el/2( tp/1030 years) 2 (22) 

This is the time when most positronium will be formed by two-body 
collisions in a flat universe. It will occur somewhat earlier in a closed 
universe because R( t )  is not increasing quite as fast as t 2/3, and because 
the sum of cosmological expansion and binding energies, which is negative, 
must be added in the closed universe case to (21). 

However, Page and McKee have shown that three-body collisions of 
the form 

e + + e - + e •  Ps~ +e  • (23) 

where Ps, denotes positronium with principal quantum number n, will 
actually cause most e ~ to become bound long before tb, due to recombination 
into positronium states that have binding energy much greater than EK. 
The true positronium formation time scale is 

tpo s ~ ( 1071 years ) f~-2 /3(  tp/1030 years) 2 (24) 

where we have assumed R(t )oc  t 2/3. The time scale (24) will be smaller than 
(22) unless fe ~< 10 -42, which seems highly unlikely (and would contradict 
my earlier calculations). Thus most of the free electrons and positrons in 
the plasma will bind around time tpos, going typically into an orbit with 
principal quantum number a bit below the value 

n ~ 1022fe4/9(tp/1030 y e a r s )  2/3 (25) 

These positronium states have radii of 

r, - (1012 megaparsecs)f~-8/a(tp/1030 years) 4/3 (26) 

which is much larger than the radius of the visible universe today. In this 
state, the orbital velocities of the electron and positron about each other 
are about 10 -4 cm/century. 

The state Ps, will gradually decay by emission of photons to the ground 
state, where the positronium will rapidly annihilate. Page and McKee used 
the classical power loss formula for electromagnetic radiation from a dipole 
to calculate the decay time: 

tdecay ~ E n / ( d E / d t )  ~ 2m~le-lOn315(n +/)-2  

m - l e - l ~  6 (27) 

For comparison, Bethe and Salpeter (1957) give exact times for decay from 
the singlet and triplet S states as 1.25 x 10-1~ 3 and 1.4 • 1 0 - 7 n  3, respectively, 
and Sakurai (1967) gives a decay time proportional to n 45, so the decay 
time (27) will apply only if the positronium forms in an n - - l  state most 
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Table II. Time Scales in Open, Flat, and Very Large Closed Universes a 

Event Time scale (years) 

Sun leaves Main Sequence 5 • 109 
Large clusters evaporate galaxies 1011 
Stars cease to form 1012 
Longest lived stars use all their fuel, and cool to very low temperature 1014 
Dead planets detached from dead stars via stellar collisions 1015 
Dead stars evaporate from galaxies (approximately 90-99% of stars 1019 

will evaporate; 1-10% will collect in galactic centers to form 
gigantic black holes) 

Neutron stars cool to 100 K 1019 
Orbits of  planets decay via gravitational radiation 1020 
Dead stars evapoarate from galactic clusters (stars are at 100 K due 1023 

to proton decay) 

At this stage matter consists of  about 90% dead stars, 9% black holes, and 1% Atomic 
hydrogen and helium 

Protons decay [according to SU(5) GUT] 1030 
Stars evaporate via proton decay (GUT) 1033 

Most matter in the universe is now in the form of e +, e- ,  ~, t,, 3' 

Solar-mass black holes evapoarte via Hawking process 1064 
Ordinary matter liquifies due to quantum tunneling 1065 
In fiat and closed universes, most e + and e-  form positronium (in 1071 

open universes, most e +, e-  remain free) 
In flat and closed universes, positronium decays via cascade, releasing 10116 

1022 photons 
Supercluster-mass black holes (1017M| evaporate via Hawking 10117 

process 
Protons decay via Hawking process 10 I28 
If ordinary matter survives decay via GUTs or Hawking process, it 1015~176 

decays to iron 
All iron collapses into black holes 101~ 

aThis table is a complete list of  all significant time scales for the evolution of  matter. However, 
it should be noted that some processes listed will preclude the operation of others. For 
example, if all protons decay via GUTs at 1030 years, there will be none remaining to decay 
via the Hawking process at 1012s years. In view of  our ignorance concerning the operation 
of  some of  these processes (the predicted GUT decay has not been seen experimentally, and 
may not exist), it is best to list all possible processes, and point out that the exact evolutionary 
sequence is unknown. 
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of the time (as seems reasonable). The typical transition will be An = 1, so 
something of the order of 1022 photons will be generated as the PsN state 
cascades downward. Putting (25) into (27) gives the typical time of annihi- 
lation: 

tdecay ~'~ (10116 years) f  e-8/3( tp/1030 years) 4 (28) 

The fraction of free electrons and positrons decreases rapidly in fiat uni- 
verses, but they bind in such high quantum numbers that by the time they 
have decayed the radiation bath will be redshifted to such low mass densities 
that a fiat universe will be always matter-dominated by the electrons and 
positrons. 

The evolution of the photon spectrum is complex, due to the sequence 
of first baryon and then positronium decays. Page and McKee have given 
some estimates for the evolution of the spectrum, the main conclusion being 
that the energy density of the photons arising from positronium cascades 
and annihilation completely dominates all other contributions to the radi- 
ation background if in fact the Barrow-Tipler assumption that black holes 
larger than supercluster mass never form. If this is not true, the radiation 
background may become dominated by emission from black holes. (If black 
holes do not have an upper bound in mass, then the assumption of 
homogeneity that everyone takes will also be unwarranted.) 

Thus after 10116 years, the matter of the universe consists of an electron- 
positron plasma, with a good percentage of positronium in the fiat and 
long-lived closed universes immersed in a radiation bath fed by decays of 
the positronium. Essentially no black holes, no stars, no planets, or other 
solid material remains. 

If proton decay does not occur by GUTs, it is likely that protons will 
decay via the Hawking process. Time scales for this decay scenario are most 
uncertain, but the latest calculations give a proton lifetime of 10128 years. 
If protons survive this long, the summary in the preceding paragraph would 
be the same, except the number 10116 would be replaced by 10128 , and the 
radiation bath would be fed by proton decay. 

If proton decay does not occur at all, then Dyson has shown that 
quantum tunneling will cause the eternal matter to decay first to iron (time 
scale 1015~176 years) and the iron would collapse to black holes in time scales 
of 101~ years. All of the matter time scales are collected together in Table 
II. 

4. THE COSMOLOGICAL LIMITS ON COMPUTATION 

Computation in the far future was first discussed briefly in papers by 
Dyson (1979) and Frautschi (1982). A program can in principle be run on 
many types of hardware, and even in the far future of a fiat Friedman 
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universe matter in the form of electrons, positrons, and radiation will 
continue to exist. The basic problem of physical computat ion is to determine 
if the forms of matter that, as I outlined in Section 3, will exist in the far 
future can be used as construction materials for computer elements, if there 
is sufficient energy in the future environment to run the programs, and if 
the causal structure of  the universe will permit unlimited communication 
between various parts of  the computer. 

I f  computat ion is to be unlimited in the far future of  the universe-- i f  
the construction of a true universal Turing machine is to be an actual 
possibil i ty--the following three conditions must hold: 

1. Information processing must be able to continue along at least some 
future-endless timelike curve 3' all the way to the future c-boundary 
of the universe. 

2. The amount  of  new information processed in J - (3 ' )  between now 
and the c-boundary is infinite. 

3. The amount  of  information stored in J-(3")c'~S(t), where S(t) 
denotes the constant mean curvature foliation of the universe, diver- 
ges as the leaves of  the foliation approach the future c-boundary. 

The global instant "now"  is defined to be all those events contained 
in the leaf of  the constant mean curvature foliation that passes through the 
Earth at the present time. This definition assumes that a constant mean 
curvature foliation exists, but the definition can be generalized to apply in 
other spacetimes. However,  such a generalization will not be necessary, for 
I have indicated in Section 2 that a physically realistic cosmology will have 
a constant mean curvature foliation. 

I have required the stored information to grow in the causal past J-(3") 
of a single timelike curve because events must be in the causal past of  a 
timelike curve if they are to be able to communicate with the curve. Computer  
elements located outside J-(3,) cannot communicate with the element that 
moves along the timelike curve 3', and so cannot be regarded as part  of the 
same computer.  [Since J-(S) is the closure of  I-(S) for any set S in a 
globally hyperbolic spacetime (Hawking and Ellis, 1973), I could replace 
J-(y) with 1-(3") in the above conditions without changing the definition 
significantly.] The definition does not preclude computer elements existing 
elsewhere, but the information generated by other computer elements counts 
only if the other elements can eventually communicate with the elements 
around the curve y. 

It is extremely important to note that there need be no correspondence 
between the duration of various measures of  physical times, such as proper  
time, and the number  of  bits processed in that time interval. It is quite 
possible for the universe to exist for only a finite proper  time in the future 
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before ending in the c-boundary--as happens in closed universes--and yet 
for an infinite number of bits to be processed in that time interval. All that 
is required for this to occur is for the rate of information processing as 
measured in proper time to diverge sufficiently rapidly as the final singularity 
is approached. I would claim that the appropriate measure of time duration 
by computers in a given environment is not in general proper time but the 
length of time it takes to process a bit. In the current physical (and biological) 
environment, the bit processing rate is directly proportional to proper time, 
and this is why we consider that proper time measures time correctly. But 
if the bit processing rate of  a computer in an environment were increasing 
relative to proper time, it would be appropriate to reject proper time as the 
computer clock time. The appropriate measure of physical time, and the 
fact that this measure may not be the same as proper time in a given 
cosmological epoch, has been discussed at length by Misner (1969). 

But it is not sufficient for the number of bits processed to be infinite 
for a true universal Turing machine is to be physically possible. If a computer 
with a finite amount of information storage--a finite state machine--were 
to operate forever, it would start to repeat itself. A universal Turing machine 
is an infinite state machine (though "potentially infinite" would be a more 
appropriate nomenclature), and an infinite state machine is possible only 
if condition 3 holds. 

The absolute minimum amount of energy required to read a given 
amount of information is determined by second law of thermodynamics. If 
AI is the information read in bits, then the second law requires 

AI <_ AE/kT In 2 = (AE/T)(ergs/K)(1.05 x 1016) (29) 

where k is Boltzmann's constant, T is the absolute temperature in degrees 
K, and AE is the amount of free energy expended. The inequality (29) is 
due to Brillouin (1962). If the temperature at which the computer is operating 
is higher than absolute zero, there is a minimum amount of energy that 
must be expended to read a bit of information. 

In the present cosmological epoch, the lowest temperature that physics 
will effectively permit computers to operate is the temperature of the 
background radiation, which is 3 K. If we put this temperature into (29), 
then the total amount of information that could be read in the present epoch 
by using the entire mass-energy of the Earth is A/--<1064 bits. For the 
mass-energy of the entire solar system, we would have AI_< 1070 bits; for 
the entire galaxy AI_< 108' bits; and for the mass-energy in all the matter 
in the entire visible universe, AI _< 1098 bits. 

These upper bounds can be lowered only by a decrease in the cosmologi- 
cal temperature. Since T~ (3 K) = Rnow/R (t) -~ 2 x 101~ years/t,  the cosmo- 
logical temperature will drop by only a factor of 2 over the next 20 billion 
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years, so the upper bounds on the amount of information that can be read 
will apply to all computation over this length of time. 

If inequality (29) is divided by the time difference At and the limit 
A t e 0  is taken, we obtain a constraint on the information processing rate: 

( d I / d t )  <- (dE/dt)(1.05 • 1023 bits/sec W ) / T  (30) 

where as before the temperature is measured in degrees Kelvin. At room 
temperature (300 K) the thermodynamic limit of computer reading speed 
per unit power is about 1021 bits/see per W. As of this writing the average 
off-the-shelf microcomputer works at about 108 bits/sec per W, while state- 
of-the-art super computers work at 10 l~ bits/sec per W. Even if (29) applied 
to all forms of information processing, and not just to reading of new 
information, we would still have a long way to go before reaching the limit 
(30). 

But (29) does not apply to computation per se, just to the loading of 
new information into a computer, and permanently recording the results 
of the computation. Inequality (29) can be derived from several quite 
different assumptions. Brillouin (1962) obtained (29) by calculating the 
minimum amount of energy needed to measure one bit of information; in 
computers, measuring would correspond to reading a bit. (If there was no 
minimum, Maxwell's demon could operate, thereby contradicting the 
second law.) Von Neumann derived (29) by calculating the minimum 
amount of energy required for accurate transmission of a bit from one 
logical gate to the next (Porod et al., 1984a, b). Landauer arrived at (29) 
by arguing that computation is logically irreversible (Landauer, 1961; 
Landauer and Woo, 1971); that is, information must be thrown away at 
each computation step. Both the Brillouin and the von Neumann arguments 
are founded solidly on the second law as generalized by information theory, 
but Bennett (1973) has pointed out that Landauer's derivation is defective, 
for computation is in actuality logically reversible. To make a reversible 
computer, all one has to do is retain all the bits of information left over 
from the intermediate steps, and once the computation is completed, run 
the computer in reverse. This will restore the computer to its original state, 
with an arbitrarily small amount of energy dissipated. A number of ideal 
physical models of reversible computers have been published (Toffoli et 
al., 1982; Zurek, 1984). The only time that energy must be dissipated is 
when information must be thrown away, which is when the program is 
initially read, and when the final result of the computation is recorded. To 
both of these processes the inequality (29) applies, though even in these 
cases one could in principle record all possibilities of a string of symbols 
the length of the input and the output, which would obviate the necessity 
of throwing away any information. 
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However, the number of memory elements required to record all 
possibilities would increase exponentially with the length of the input. In 
order to avoid losing the information recorded to thermal fluctuations, the 
two states of each memory element (necessary to record one bit of informa- 
tion) would have to differ in energy by kT. Now the synthesis of such a 
memory element would itself require an amount of energy of order kT or 
greater, for the very material to construct the computer element would have 
to be located, and this act of locating is equivalent to the measurement that 
Brillouin showed requires expenditure of energy given by (29). Thus, retain- 
ing all possibilities in memory would cost more in energy than throwing 
away information. Furthermore, Bennett (1982), following von Neumann 
(see Porod et al., 1984a, b), has pointed out that preventing the information 
used in intermediate steps in the computation process from being destroyed 
by thermal fluctuations may require net energy dissipation of order kT per 
step. In fact, Bennett shows that the transcription process in DNA replication 
dissipates energy at a rate of about two orders of magnitude above kT per 
step, and he suggests this is due to the requirement of information stability 
under thermal fluctuations. (The models of reversible computation men- 
tioned above are apparently unstable to thermal fluctuations.) Furthermore, 
I shall show below that the transmission of information from one part of 
the computer to another on cosmological length scales is likely to require 
the order of k T  per bit. I shall therefore assume that (29) places a funda- 
mental limit to information growth in the far future. 

From (30) we have the following inequality between the total informa- 
tion processed in the future and the energy required to process it: 

I =  ( d I / d t )  d t<- ( k ln2 )  -1 r - ~ ( d E / d t )  dt (31) 
tnow tnow 

where the upper bound tc-bo.na is the time the c-boundary is reached. The 
value of the integrals in (31) do not depend on which measure of time 
duration is used. 

By condition 2, the leftmost integral must diverge if information pro- 
cessing and storage is to be unlimited, which implies that the rightmost 
integral must also diverge. In an open or flat cosmology, it is possible for 
the rightmost integral to diverge even if the total energy used, 

I to-bound 
E = (UE/dt)  dt (32) 

tnow 

is finite. Since the temperature goes to zero as the c-boundary is approached 
in these cosmologies, the information processed can diverge with the total 
energy being used remaining finite if the information is processed sufficiently 
slowly. In closed universes the integral (32) must diverge, and diverge very 
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rapidly near the final singularity, since the temperature diverges as T -  
1 / R ( t ) .  It shall show that it is possible in principle for the rightmost integral 
in (31) to diverge in all three basic cosmologies: open, fiat, and closed. 

What will be the most important energy source in the far future? At 
present, the most important energy source is matter: mass is converted into 
energy in stars via thermonuclear fusion, or via radioactive decay of heavy 
nuclei in bulk matter. But matter is gradually being used up, and no matter 
how efficient the conversion of energy into information, there are the finite 
upper bounds that I calculated above to the amount of information that 
can be read and recorded by the matter available in any finite region over 
the next 20 billion years. Therefore, computation may use up all the material 
in the solar system in time scales that are short in comparison with the age 
of the universe. Thus for computation to continue it will be necessary to 
expand from the solar system, and gain control of new material. On time 
scales of  tens of  billions of  years, the total region being used for computation 
will be an expanding sphere, with almost all of  the activity concentrated in 
a narrow region within a distance AR of  the surface of the sphere. The 
interior of  the sphere will be an essentially dead region, the matter having 
been converted into information during the previous eons. The sphere will 
be expanding on net at some fraction of the speed of light, so on the average 
the region being used for information processing and storage and the net 
information stored will be increasing as t 2 (if the interior had not been 
exhausted, the increase would be proportional to the volume of the sphere 
rather than its area, or t3). Thus, although perpetual exponential growth of 
information stored is not allowed by the laws of physics, a power law growth 
is allowed. If  the average expansion rate, as measured in the local rest frame 
of inner boundary of the expanding sphere, is always greater than the 
current Hubble expansion of 50-100km/sec per megaparsec, then the 
growth can continue as t 2 for the next 1030 years, until the decay of protons 
becomes important--indefinitely, if we assume protons are forever. 

By the end of  the period 1030-1032 years, the only matter surviving will 
be electrons and positrons from the decays of single atoms in interstellar 
space. Frautschi (1982) has considered various possible energy sources, 
such as Hawking radiation from black holes, and the energy from electron- 
positron annihilation. He concludes that in open universes, black holes 
would just barely supply sufficient energy, but the density of electrons and 
positrons would not. However, it seems to me that neither of these would 
be the main energy source in the far future. 

As I discussed in Section 2, the most important form of energy available 
in this epoch will be the shear energy, so it is the most probable energy 
source for computation. As I discussed in Section 2, the shear energy can 
be extracted by making use of  the temperature differential it generates. By 
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Carnot's theorem, the efficiency of energy extraction should be proportional 
to AT/T ,  which is independent of the scale factor R by equation (6), so 
the percentage of energy extracted from the shear energy should be indepen- 
dent of time unless the distortion parameter {exp/3 }~j goes to zero asymptoti- 
cally, which it cannot do because the shear does not, and o -2--/3 '2 . The 
shear energy will be equally available at all points inside the sphere of  life 
and not just on the surface as was the matter energy (at least in an 
approximately homogeneous universe, and I will assume, as observations 
suggest, that the universe is homogeneous). Thus the region being used for 
computation can continue its expansion outward, but also begin to reuse 
the desert of  the interior, until the region being used for computation is 
growing proportionally to the volume rather than just the surface area. The 
total energy available to the whole computer will in the long run be 

E ~ p R  3 (33) 

where p is the energy density of the available energy source, which in the 
end will- be the shear. For open universes we have R ~ t and ore - P - t-2, 
so d E / d t  ~ const, where t is the proper time. Putting these relations and 
(33) into (31), remembering that T -  1 /R ~ 1/t, and absorbing all constants 
into one constant C, we get t '  

I ~ C [ t dt ~ t 2 (34) 

which diverges as t-~ + ~ .  For flat universes, the only energy source is the 
electron-positron plasma, so p L R -3 neglecting annihilation. Thus, neglect- 
ing annihilation, we have E oc const. If this finite amount of energy is used 
slowly, say on the average dE/dt<~ t -~, then the total energy used over 
infinite proper time will be finite if 3 > 1. We have R ~ t 2/3 for matter- 
dominated flat universes, so (31) gives 

I << - C I t - n ( t 2 / 3 )  d t ~  t -~+5/3 (35) 

which diverges as t -~ + ~  if ~ < 5/3. Thus, if the energy use for all purposes 
together with the particle annihilation is slow enough, the amount of 
information processed can diverge in flat universes. 

For closed universes, the R -6 shear term will eventually dominate. But 
before that epoch is reached, the universe, if it is closed, will pass through 
epochs of matter, radiation, R -2 shear, and curvature domination, the 
sequence and duration of each epoch depending on the lifetime of the 
closed universe. The nature of information processing in the late expanding 
and early contracting periods will be essentially the same as its predicted 
nature in the expanding periods in open and flat universes, which I described 
at length above. I shall therefore consider only the R -6 shear-dominated 



Cosmological Limits on Computation 649 

epoch of  a closed universe, for it will be in this epoch that the information 
integral will be divergent or convergent. 

The energy available for computation near the final singularity will be, 
according to (33), 

E ~ (~2 /R6) (R3)  ~ ]~2R-3 ~ ~2/-1 (36) 

so d E / d t -  t -2, where t is the proper time before the final singularity is 
reached at t = 0 .  Since T -1~ R ~ t 1/3, the right-hand integral in (31) gives 

I<~ C I (t-2)(t1/3) d t ~  t -2/3 (37) 

which diverges as t -~ 0. Thus, even though the energy used for information 
processing must diverge very rapidly as the final singularity is approached,  
we see that tfiere is sufficient energy in the form of  shear to provide it. 

The ultimate form of energy available for computation is thus gravita- 
tional energy in the form of shear. Gravitational energy is actually the 
ultimate energy source in many circumstances. For example, Zel 'dovich 
and Novikov (1971) have pointed out that since the neutrons in a neutron 
star (the final state of  a type II  supernova) are in a higher energy nuclear 
state than the particles, protons and electrons, making up the original star, 
no net nuclear energy is liberated during the evolution of a massive star. 
Rather, the energy that goes into the synthesis of  the heavy elements 
ultimately comes from the gravitational potential energy that is liberated 
as the radius of  the core of  the star shrinks from several hundred thousand 
kilometers down to neutron star size of  a few kilometers. In Newtonian 
gravitation, there is no limit in principle to the amount  of  energy we can 
extract from a collapsing star, for we can keep shrinking the radius of  the 
star down to zero. However,  Schoen and Yau (1978, 1979; see also Witten, 
1981; Horowitz and Perry, 1982; Gibbons et al., 1983) have shown that in 
general relativity, there is such a limit: the initial mass of  the star. The 
reason is that a star can be shrunk to its Schwarzschild radius, and no 
further. However,  the Schoen-Yau theorem assumes that spacetime is 
asymptotically flat, and that event horizons must form when the gravitational 
field becomes too intense. In a spacetime with an omega point, there are 
no horizons, so there are no black holes. Thus, in this type of closed universe, 
it becomes possible to extract an infinite amount  of  energy just as in 
Newtonian gravitation. 

As in the ease of  the open universe, the efficiency of energy extraction 
for computat ion near the final singularity will be independent of  the scale 
factor R, but it will be dependent  on the distortion parameter/3.  I pointed 
out in Section 2 that if communication is to be possible arbitrarily close to 
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the singularity, the horizons must continue to disappear, and this requires 
/3 to continue to alternate in size from very small values to very large values. 
On the average,/3 will not asymptotically approach zero, so on the average 
the efficiency of energy extraction will have a lower bound, which we can 
absorb in the constant C in (37). 

In the above evaluations of equation (31) for the open, fiat, and closed 
universes, I have assumed that T oc 1/R (t), which is the adiabatic variation. 
In reality, the temperature variation will be nonadiabatic, because in pro- 
cessing information, waste heat is being generated at the rate d E / d t ,  and 
this waste heat will raise the temperature of  whatever thermal sink is used. 
If  unlimited computation is to be possible, a thermal sink must be found 
which can absorb heat sufficiently fast so that information processing will 
not be incinerated by its own waste heat. In Dyson's model (1979), which 
was concerned with the indefinite survival of life rather than unlimited 
computation, waste heat elimination was a major difficulty facing life in 
the far future. Dyson assumed that life was restricted to a constant comoving 
volume, and that heat was eliminated by radiation to the exterior of the 
comoving volume. 

Radiating waste heat to an exterior region is difficult in open and fiat 
universes. It is absolutely impossible in closed universes in which computa- 
tion is being carried out over the entire universe, for in such a case there 
is no exterior region. Therefore, a heat sink copresent with the computer 
must be used. The obvious choice for such a heat sink is the thermal radiation 
background. If waste heat for information processing is dumped into the 
radiation background as it is generated, the energy density of the background 
will rise at the same rate as the energy density of the energy source, which 
means E~ V -  t - 2 ~  T 4. This gives T -  t -1/2. For shear-dominated closed 
universes, this implies that the temperature will rise faster as the universe 
collapses, as T ~  R -3/2 rather than as T - R  -1. For open universes, the 
temperature will fall off more slowly, as R -~/2 rather than as R -~. If these 
nonadiabatic temperature variations are inserted into (31), we find that 

T - l ( d E / d t )  dt diverges as t -1/2 in a shear-dominated closed universe, and 
as t ~/2 in an open universe. For flat universes, the integral will still diverge 
provided 6 < 5/3. To summarize: waste heat does not seem to pose a problem 
for continuing information processing in either the open, flat, or closed 
universes. 

I have argued that event horizons cannot exist if unlimited information 
processing is to be possible, because such horizons would prevent communi- 
cation between different computers, and even different parts of the same 
computer. One might wonder, however, if a single computer could neverthe- 
less process an infinite amount of information in the ever-shrinking region 
with which it could communicate, by processing information faster than 
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the communication region is shrinking. I can now show that this is impossible 
on energetic grounds. 

At any cosmic time t, the region from which the observer y can receive 
signals is J - ( 7 ) n S ( t ) .  In the Friedman universe, the boundary of this 
region is determined by the ingoing radial null geodesics, which satisfy 
ds 2 = O. Since the closed Friedman metric is given by 

ds 2 = - d t 2  + R2(  t)[ dr 2 + sin2(r)(  d02 + sin 2 0 &b2)] 

where r is the comoving distance, the null geodesic equation ds z=  0 gives 
dr = - dt ( 1 - r 2) ~/2/ R ( t) .  The proper radius L of the communication region 
then decreases as d L =  R (  t) dr(1 - r2) -~/2, so d L  = - d t ,  and thus the proper 
radius of the communication goes as L -  t near the final singularity at t = 0. 
In the radiation- or matter-dominated Friedman universe, R ( t ) - t  1/2 or 
R ( t )  ~ t 2/3, respectively, so the proper volume of the communication region 
goes as V-- L 3 ~ R6( t )  o r  ~ R 9 / 2 ( t ) ,  respectively. The proper energy density 
can rise only as R-4(t)  or R-3(t),  so the available energy in the communica- 
tion region decreases as R2(t) or R3/2(t) .  [The available shear energy in a 
shear-dominated universes would decrease as Ra(t) if horizons were pres- 
ent.] Since the available energy must increase if an infinite amount of 
information is to be processed and stored, I conclude that horizons will 
prevent an infinite amount of information processing and storage. 

But the disappearance of horizons is only a necessary condition for 
unlimited communication; it is far from being a sufficient one. Even if 
horizons disappear, it is still necessary to use energy to transmit the signals 
in the horizon-free direction. Dyson (1979) has investigated the problem 
of transmission of signals via electromagnetic radiation in open Friedman 
universes (his analysis extends immediately to the flat Friedman universe, 
and to ever-expanding anisotropic universes). Dyson assumed that the 
transmitter and receiver consisted of N and N '  electrons, respectively, and 
that the comoving size of the receiver was constant [that is, each actual 
physical length scale of the receiver is increasing as R(t)] .  He concluded 
that one could select the bandwidth, transmission frequency, and duty cycle 
in such a way that an infinite number of bits could be transmitted between 
two observers of constant comoving separation between now and i § with 
f ini te  total expenditure of  energy. However, his calculations did indicate 
that only computer elements that today are within a redshift of about 1.7 
of each other (corresponding to a comoving coordinate distance of 1) could 
send signals directly to each other. Beyond this distance, the energy required 
for the direct transmission of a bit rises exponentially with comoving radial 
coordinate. Dyson argued that signals could be sent between observers with 
arbitrary comoving separation by transmitting through relays, but he did 
not investigate the energy cost of such relay transmission. It seems likely 
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that the energy cost of  each relay would be of the order of k T  per bit, so 
that M k T  would be required per bit to transmit a message a comoving 
distance of  M. Thus the energy cost of transmission would rise linearly with 
the comoving separation. Since the energy available in the form of shear 
energy in open universes diverges linearly with time, there will be sufficient 
energy in open universes to transmit an arbitrarily large number of bits an 
arbitrarily large comoving distance. In fiat universes, this is impossible, 
since only a finite amount of  energy is available in a comoving volume. 

Dyson's calculations assume that the interstellar medium is completely 
transparent to radiation, so they do not apply in the regime near the final 
singularity of a closed universe, where the optical depth is quite small. I 
shall assume that the transmission of information in this regime is governed 
by the Shannon formula for the transmission of information in a noisy 
channel (Shannon and Weaver, 1949): d I / d t  < - B In(1 + Ps/PN),  where B 
is the bandwidth of the signal, Ps is the power of the signal, and PN is the 
power of the noise. Metzner and Morfison (1959) were the first to apply 
the Shannon formula in a cosmological context, but they were interested 
only in the transmission of signals from the past to the present-day Earth. 

For small signal-to-noise ratios, the Shannon formula reduces to 
d I / d t  <-BPs/PN = Ps /kT ,  where in the last step I have used the Nyquist 
relation PN = kTB (Brillouin, 1962). The expression 

d I / d t  <. P s / k T  = ( d E / d T ) s / k T  

closely resembles equation (30); the only difference is that in (30), the 
quantities d E / d t  and T are measured at the same event, whereas it is not 
clear how to apply the above expression, since the temperature, signal 
power, and noise power are all changing between the emission and reception 
of the signal, due to the cosmological blueshift or redshift. It will most 
often be a blueshift, because the signals will generally be transmitted in the 
contracting direction for which the horizon disappears. I shall assume that 
these cosmological Doppler shifts are properly taken into account by letting 
dE/d t s  be the power of the transmitter, while T is the temperature of the 
receiver; this means that the information transmission allowed by the 
Shannon formula is reduced from that of  (30) by the factor R(t ) ,  since 
temperature scales as T ~  1 /R( t ) .  Putting an extra factor of R into the lhs 
of (37), we see that I = S ( d I / d t ) d t  still diverges, though at the reduced 
rate t -1/3 [it diverges only as In (t) if we take into account the waste heat 
due to information processing and transmission], so it is possible to transmit 
an infinite number of bits from one side to the other of a closed universe 
with an omega point. 

We now come to condition 3, the requirement that it must be possible 
to store an amount of information that diverges as the c-boundary is 
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approached. The storage of  n bits of information requires the existence in 
space of at least 2n distinguishable states of  matter, radiation, or black 
holes. Furthermore, in order that this information not be lost, the energy 
of  these states must be above the random fluctuation energy kT  of  the 
environment of the storage device, as I discussed above. It seems unlikely 
that radiation by itself can serve as a storage device, for it tends to dissipate 
unless it is confined by solid matter. In all environments I shall be concerned 
with, the far future of an expanding universe and the hot environment near 
the final singularity of  a closed universe, solid matter will not exist, so 
radiation is probably ruled out as the basis of information storage. Black 
holes are probably ruled out as storage devices in the far future for three 
reasons: first, if Barrow and Tipler (1978) are correct that black holes greater 
than supercluster mass never form, then black holes will eventually evapor- 
ate and hence cease to exist; second, it is not clear how black holes could 
be used to store distinguishable bits of information; third, if a black hole 
could be used to store information, the amount of mass-energy used per 
bit is likely to be too large to be supplied by the feeble energy sources of 
the far future (recall that the power usage must decrease as dE/d t  ~ t-~). 
However, I should emphasize that neither radiation nor black holes are 
conclusively ruled out as information storage devices in the far future, 
though they do seem unlikely candidates. 

This leaves only matter from which to construct information storage 
devices. If  we ignore the exotic forms of matter whose existence has been 
hypothesized but never seen, the only matter remaining in the far future 
are positrons and electrons in a mixture of free particle plasma and 
positronium. D.yson (1981) was the first to suggest that it may be possible 
for information to be stored in such a medium. 

It is certainly possible to store information in a positronium atom. For 
example, parallel spins of  the electron and positron could denote 1, and 
antiparallel spins could denote 0. The energy AE required to induce a 
transition between the lower energy antiparallel state and the parallel state 
decreases as A E - - 1 / n  3, where n is the principal quantum number of 
positronium (Bethe and Salpeter, 1957). We must have AE > k T -  1/R(t ) ,  
and from equations (25) and (26) we have r - n  2, so r<_ R2/3(t). In short, 
the positronium atoms used to store information must grow, but at a slower 
rate than the universe expands. The energy needed to cancel out the radiative 
losses of the positronium and E decreases sufficiently rapidly so that it is 
possible to satisfy the above constraints on dE/d t  in both the flat and open 
universes and still cause an infinite number of  transitions between now and 
the c-boundary, if we ignore the problem of  exactly how the available 
energy in the form of shear is to be transferred to the atoms. I shall also 
not deal with the question of whether the atoms can be organized together 
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in the complicated fashion required for computers. These are very complex 
unsolved problems, which I shall not attack in this preliminary survey. All 
I can do here is indicate the directions that future research on the question 
of unlimited computation must take. 

As the universe expands, the number of positronium atoms being used 
as RAM must diverge as the c-boundary is approached if the amount of 
information actually stored is to diverge, and this is a very serious problem, 
since, as Dyson has shown, the region being used for computation is 
bounded in comoving coordinates, at least for fiat universes. Furthermore, 
there will be difficulties in open universes in obtaining the necessary 
positronium, because very little positronium will be formed because of the 
rapid expansion. Thus I make a very tentative prediction that the universe 
must be closed if unlimited computation is to be possible. 

In open or flat universes, it is necessary that the region in which the 
information is stored diverge as the c-boundary is approached, for Beken- 
stein (1981a) has shown that the information that can be stored in a region 
of radius D is bounded above by 

I <- 2 ~ E D / c h  (38) 

where E is the amount of energy used to store one bit. Bekenstein (1981b) 
has argued that E is bounded below in any finite region in open and flat 
universes, so if I is to diverge, so must D. The Bekenstein bound (38) has 
been derived only for spacetimes with noncompact Cauchy hypersurfaces 
and for closed universes with event horizons. If it applies to all  closed 
universes, then it will be impossible for unlimited information storage to 
be possible in closed universes, since D will go to zero as the c-boundary 
is approached, and thus (38) would prevent the amount of information 
stored from diverging. The derivation of (38) seems to depend crucially on 
the presence of event horizons, so there is no reason to believe it will apply 
to closed universes with an omega point. I shall assume here that it does 
not, but this is a point that needs to be investigated. But there are good 
reasons to believe it will apply (see, however, Page, 1982; Bekenstein, 1983; 
Unruh and Wald, 1983) to closed universes with horizons. If it does, this 
provides another argument that unlimited computation requires the c- 
boundary to be an omega point. It also indicates that in order for computa- 
tion to be unlimited, the computer will ultimately have to encompass the 
entire universe. 

It is occasionally claimed (Mundici, 1981; Bremermann, 1982) that the 
energy-time uncertainty relation restricts the rate at which computers can 
process information. Mundici (1981) has claimed that the energy-time 
uncertainty relations require (d I /d t )  2 <- h -1 d E / d t .  Bremermann (1982), on 
the other hand, feels that the energy-time uncertainty relations require 
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d I / d t  < - [h -1 ln(1 +47r)]E. However, it is not clear that such a restriction 
actually applies, because it is not clear what time coordinate t is the 
appropriate one to use (Jammer, 1974). In fact, if t is a time external to 
the system being measured, then the energy-t ime uncertainty relation 
AE At>--h/2 can be evaded (Caves et al., 1980; Likharev, 1982). The 
energy-t ime relation only restricts the measurement  of  times that are intrinsi- 
cally defined by the physical system being measured. Landauer (1982) has 
given other arguments which suggest that the energy-time uncertainty 
relation in fact does not restrict the information processing rate. 

Nevertheless, let us assume that the information processing rate is in 
fact restricted by either the Mundici relation or the Bremermann relation. 
I shall now show that Mundici 's  relation will not prevent an infinite amount  
of  information processing in any type of universe, be it open, flat, or closed. 
Bremmermann 's  relation will prevent infinite information processing only 
in the flat universe. I f  we assume that the t which is restricted is cosmic 
proper time, then a straightforward calculation shows that I = S ( d I / d t ) d t  
can diverge even if ( d I / d t ) E < - h - l d E / d t  (Mundici) or d I / d t < - h - l E  
(Bremermann) applies in open universes (since d E / d t - c o n s t ,  or E ~ t), 
or in closed universes (since d E / d t - t  -E, o r  E ~ l - l ) .  In flat universes 
Mundici 's  relation will hold with infinite information processing if 1 < 6 -< 2 
(since d E / d t  ~ t-~). Bremermann's  relation prevents an infinite amount  of  
information processing in the flat universe case because his relation requires 
an infinite amount  of  energy for an infinite amount  of  information process- 
ing, and there is only a finite amount of  energy available in a finite comoving 
volume in the flat universe case. 

In closed universes condition 3 requires that information be stored in 
high-energy particle states of  mass m. As the radius of  a closed universe 
near the final state goes to zero near the final singularity, the information 
must be stored in particle states of higher and higher energies in order that 
it not be lost through random fluctuations. Furthermore, the total number  
N of particle states of  mass m in the closed universe must diverge as the 
final singularity is approached if the amount  of  information stored in these 
particle states is to diverge, but the divergence of the total energy in 
elementary particle states cannot be more rapid than the divergence of the 
shear energy which is the energy source for the creation of  these particle 
states. These are clearly necessary conditions for unlimited information to 
be stored, though they are not sufficient conditions. However, these condi- 
tions suffice to derive some restrictions on elementary particle states. 

The restriction that the mass of the elementary particle state be greater 
than the thermal energy is expressed as 

m > k T ~  1 /R( t )  (39) 
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while the requirement that the energy in the particle states be less than the 
shear energy can be written in the form of a restriction on energy densities: 

N m /  V < 0 "2~  1/ t 2~  1/ R 6 (40) 

where I have used the growth rate of shear energy density in the last two 
steps. Now V - R  3, so (40) becomes 

N m /  V >- N ( 1 /  R ) /  R 3 ~ N~  t 4/3 (41) 

so the total number of particle states could grow as fast as  1/ t  2/3 without 
violating the energy upper bound. The total stored information /ToT we 
would expect to grow roughly as N, so ITox can diverge as fast as 1/ t  2/3 if 
the growth of particle states with energy permits. But the energy in the 
particle states cannot grow faster than this without exhausing the energy 
supply. Suppose that we write N ~  t -e, where 0 <  e <2 /3 .  Remembering 
that almost all of  the time R ( t ) ~  t 1/3 near the final singularity, we obtain 
from (41) 

m < V / N t  2~  1 / N t ~  t ~-l (42) 

The inequalities (39) and (42) can be combined to give a constraint on the 
mass-energy of the particles: 

1 / t l /3<  m < t ~-1 (43) 

We can put the energy scales into (43) by noting that 1/ t  U3~ 1 / R ( t )  ~ k T  

E, where E is the actual particle energy measured in GeV. The inequality 
(43) then becomes 

E < m < E 3(l-e) (44) 

where 0 < e < 2/3. The final inequality (44) means that if condition 3 is to 
be satisfied, there must be a particle state with energy in between the upper 
and lower limits of (44). Furthermore, on the average the number of particle 
states cannot grow faster than E 3, since otherwise the shear would be 
damped out by the production of particle states. 

The bound (44) is not incredibly strong, but it is sufficient to rule out 
a number of proposed elementary particle spectra at high energies, for 
example, the exponentially increasing spectra that underlie the Hagedorn 
equation of state (Weinberg, 1972). It rules out the possibility of a "great 
deser t"- -a  lack of particle states--between the electroweak unification 
energy and the grand unification energy. It would also rule out standard 
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superstring theories, for in such theories the energy going into the excitation 
of the vibration modes of  the string grow too fast above the Planck energy. 

The true importance of (44) is that it shows it is possible to test the 
possibility of unlimited computation, for computation in the far future is 
possible only if matter has certain properties, and if we assume that the 
properties of matter do not change with time, then these properties of matter 
in the far future will also be properties of matter now. It is not possible of 
course to investigate the properties of matter and the structure of the universe 
in the far future, but it is possible to investigate these aspects of  nature today. 

I showed in Section 2 that if computers are to be able to continue to 
communicate indefinitely near the final singularity, the c-boundary must 
be a single point, the omega point. Furthermore, solutions of the Einstein 
equations with an omega point are probably of measure zero in the initial 
data of the space of solutions. That is, it is of  measure zero if the action of 
computing machines on the universe is neglected. In principle, may be 
possible by  exerting relatively small forces at just the right series of  instants 
on a truly global scale for machines to force a generic Bianchi type IX 
closed universe into having an omega point by systematically eliminating 
the horizons in sequence in all directions an infinite number of times. This 
will be possible, that is, if the operations of  these machines encompass the 
entire universe, and if the properties of matter will allow the necessary 
forces. Since the probability is one that the actual universe is not of measure 
zero in the space of solutions, then if unlimited computation is possible 
and the universe is closed, it must be true that matter has the appropriate 
properties. Determining these properties would yield another testable pre- 
diction. 

I have ignored quantum gravity effects in the above discussion, for 
there is at present no generally accepted theory of  quantum gravity. But of  
course such effects will be of great importance near the final singularity of 
a closed universe. However, a few general remarks can be made. If informa- 
tion processing and storage go on without limit, then even in quantum 
cosmoslogy the physical time must be unidirectional. In particular, closed 
universes--classical or quantum-- in  which the entropy decreases during 
the contracting phase of the universe are ruled out. This means that the 
first version of Hawking's proposed quantum cosmology (1984) is ruled 
out, because entropy does in fact decrease in its contracting phase. (In a 
later version, the entropy increases monotonically.) Similarly, any classical 
or quantum cosmology based on a compact four-dimensional compact 
topology is ruled out because this would imply a cyclic time. 

I pointed out in Section 2 that only in a closed universe is it possible 
for all timelike curves to be forever in causal contact with one another. For 
this reason, the universe must be closed if computation is to be truly 
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unlimited, but this is only a weak prediction. Nevertheless, let me assume 
that the universe is closed, and follow broad features of the evolution of a 
universal Turing machine from a time near the present all the say into the 
Omega Point. (It is possibe for a closed universe to have an omega point, 
but for computation to cease before it is reached. I shall distinguish between 
these two classes of universes with omega points by capitalizing "Omega 
Point" if computation continues all the way into the omega point.) 

The computer begins its expansion from a single planet. The informa- 
tion stored and the material available for computer elements increases as 
t 3 initially, but eventually the rate of increase drops to t 2 as the resources 
in the center of the expanding computation region are exhausted. The 
increase will continue until the computer has expanded to encompass fully 
one-half of the entire universe. Because of the curvature of space (assumed 
to be a three-sphere), the proper volume of the computer will decrease as 
it expands. But if the universe is sufficiently large, the region in which the 
cOmputer is growing can still increase because the energy source is no longer 
matter energy, but shear energy. It is likely that before the computer has 
been able to expand to cover more than half the universe, the contraction 
will have begun. The cosmological radiation temperature, which has drop- 
ped to extremely low values, will begin to increase again. The redshift will 
have become a blueshift. The information will continue to increase as t" 
in the early contracting phase, where t is as before the proper time from 
the initial singularity, and n is some number ---3. The value of n will depend 
on which specific energy source is used, what form of matter is used to 
store information, and what percentage of the entire universe is encompassed 
by the computer. 

Finally, the time is reached when the computer has encompassed the 
entire universe and gained control of all matter contained therein. The 
computer begins to manipulate the dynamical evolution of the universe as 
a whole, forcing the horizons to disappear, first in one direction, and then 
another. The information stored continues to increase, but now at the 
average rate t-% where t is the proper time until the final singularity at 
t =  0, and 0 <  e <2 /3 .  As measured in proper time, the rate of growth of 
stored information is faster than exponential growth (since it diverges in 
finite time), but a more accurate measure of subjective time in this epoch 
is the amount of time needed to process one bit. In this time measure, the 
information storage increases, but the increase is a power law, with the 
power less than e. However, the increase continues as a power law 
indefinitely. 

In summary, it seems that a true universal Turing machine could in 
principle be constructed in the actual universe, or equivalently, that compu- 
tation and information storage is not limited in principle, provided that (1) 
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the  u n i v e r s e  is c losed,  (2) the  f inal  s i ngu la r i t y  is a n  o m e g a  po in t ,  a n d  (3) 

the  par t ic le  s p e c t r u m  has  a ce r ta in  form.  It  wil l  be  in t e res t ing  to d i scover  

i f  the  u n i v e r s e  has  these  p roper t i es .  
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